Toward achieving energy efficiency in presence of deep submicron noise

نویسندگان

  • Rajamohana Hegde
  • Naresh R. Shanbhag
چکیده

Presented in this paper are 1) information-theoretic lower bounds on energy consumption of noisy digital gates and 2) the concept of noise tolerance via coding for achieving energy efficiency in the presence of noise. In particular, lower bounds on a) circuit speed and supply voltage ; b) transition activity in presence of noise; c) dynamic energy dissipation; and d) total (dynamic and static) energy dissipation are derived. A surprising result is that in a scenario where dynamic component of power dissipation dominates, the supply voltage for minimum energy operation ( ) is greater than the minimum supply voltage ( min ) for reliable operation. We then propose noise tolerance via coding to approach the lower bounds on energy dissipation. We show that the lower bounds on energy for an off-chip I/O signaling example are a factor of 24 below present day systems. A very simple Hamming code can reduce the energy consumption by a factor of 3 , while Reed–Muller (RM) codes give a 4 reduction in energy dissipation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliable Low-Power Design in the Presence of Deep Submicron Noise

Scaling of feature sizes in semiconductor technology has been responsible for increasingly higher computational capacity of silicon. This has been the driver for the revolution in communications and computing. However, questions regarding the limits of scaling (and hence Moore's Law) have arisen in recent years due to the emergence of deep submicron noise. The tutorial describes noise in deep s...

متن کامل

Energy-efficiency bounds for deep submicron VLSI systems in the presence of noise

In this paper, we present an algorithm for computing the bounds on energy-efficiency of digital very large scale integration (VLSI) systems in the presence of deep submicron noise. The proposed algorithm is based on a soft-decision channel model of noisy VLSI systems and employs information–theoretic arguments. Bounds on energy-efficiency are computed for multimodule systems, static gates, dyna...

متن کامل

Neural Imaging Using Single-Photon Avalanche Diodes

Introduction: This paper analyses the ability of single-photon avalanche diodes (SPADs) for neural imaging. The current trend in the production of SPADs moves toward the minimumdark count rate (DCR) and maximum photon detection probability (PDP). Moreover, the jitter response which is the main measurement characteristic for the timing uncertainty is progressing. Methods: The neural imaging pro...

متن کامل

Buffer Buffer Decoder Buffer Buffer Low Voltage Data Line High Voltage Reverse Line Data in Data out Buffer Buffer off - Chip Data

Presented in this paper are: 1.) lower bounds on energy consumption of noisy digital gates and 2.) the concept of noise tolerance via coding for achieving energy efficiency in the presence of noise. A discrete channel model for noisy digital logic in deep submicron technology that captures the manifestation of circuit noise is presented. The lower bounds are derived via an information-theoretic...

متن کامل

Modeling the Effect of Wire Resistance in Deep Submicron Coupled Interconnects for Accurate Crosstalk Based Net Sorting

It is well known that in deep submicron technologies the coupling capacitance between adjacent wires is a critical portion of the total wire capacitance, while at the same time the capacitance between wire and substrate has become the fringing component. High frequency signals travelling across multiple level interconnect structures generate proximity effects, i.e. crosstalk effects, between ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. VLSI Syst.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2000